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The present work focuses on the development of a novel computer-based approach for tear
ferning (TF) featuring. The original TF images of the recently developed ¯ve-point grading scale
have been used to assign a grade for any TF image automatically. A vector characteristic (VC)
representing each grade was built using the reference images. A weighted combination between
features selected from textures analysis using gray level co-occurrence matrix (GLCM), power
spectrum (PS) analysis and linear speci¯city of the image were used to build the VC of each
grade. A total of 14 features from texture analysis were used. PS at di®erent frequency points and
number of line segments in each image were also used. Five features from GLCM have shown
signi¯cant di®erences between the recently developed grading scale images which are: angular
second moment at 0� and 45�, contrast, and correlation at 0� and 45�; these ¯ve features were all
included in the characteristic vector. Three speci¯c power frequencies were used in the VC
because of the discrimination power. Number of line segments was also chosen because of dis-
similarities between images. A VC for each grade of TF reference images was constructed and was
found to be signi¯cantly di®erent from each other's. This is a basic and fundamental step toward
an automatic grading for computer-based diagnosis for dry eye.

Keywords: Objective grading; tear ferning new grading scale; texture analysis; image pro-
cessing; PS.
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1. Introduction

Tears production is very important for clear vision
and eye health. Dry eye patients su®er from dis-
comfort such as sensitivity to light, stinging, burn-
ing, blurriness, grittiness, or scratchy and itchy
eye.1–3 Such experiences could arise from the ocular
surface due to changes in the quantity and quality
of the overlaying tears. The multiple causes of dry
eye make its diagnoses and treatment di±cult.4

Moreover, the currently available methods for the
dry eye diagnosis are far from perfection.5

Di®erent tear ¯lm quality and quantity tests are
available and used daily in the clinic, such as, Schir-
mer's test,6 phenol red thread test,6 Rose Bengal
staining,7 tear break-up time (TBUT),8 tear menis-
cus measurement,9 and tear osmolarity.10–12 The tear
ferning (TF) test, which is simple and inexpensive13

and can be used to examine the quality of the oc-
ular tear ¯lm, has showed good speci¯city and
sensitivity.14 When a tear sample is allowed to dry

on a glass slide under normal room temperature
and humidity, di®erent crystal ferning patterns can
be observed under light microscopy. In 1984,
Rolando suggested a four-type TF grading scale
(types I�IV) in which types I and II were more
often observed in normal eye subjects, and types III
and IV were observed in dry eye patients.15 Vari-
ous other TF grading scales have been introduced
since then,16,17 however the Rolando TF grading
scale remains the most commonly used in terms of
popularity18 and repeatability.19

Recently, a new ¯ve-point TF grading scale
(Fig. 1) was developed,20 to overcome some of the
limitations associated with Rolando grading scale13

such as poor di®erentiation between types I and II.
The recently developed grading scale is capable of
di®erentiating between TF grading patterns and
can be used as a support for other dry eye tests.20

The present study is aimed toward the develop-
ment of an automatic objective grading of TF

G1G0

G3G2

G4 

Fig. 1. The recently developed TF grading scale (grades 0–4).20
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images to assign a grade to a TF image using fea-
tures extracted from the image itself. The features
are grouped into characteristics vector and com-
pared to pre-constructed feature vectors of reference
graded images of TF.

There have been many studies in solving classi¯-
cation problem based on various types of features
and di®erent methods of feature extraction.21–23

Most of the features are generally obtained from
texture by the application of a local operator, sta-
tistical analysis, or measurement in a transformed
domain.24 Gray level co-occurrence matrix (GLCM)
is one of the earliest methods for the texture feature
extraction proposed by Haralick et al.25 in 1973 and
remains as an important feature extraction method
in the domain of texture analysis. A total of 14 fea-
tures were extracted by Haralick from the GLCMs
to characterize texture.26 Many quantitative mea-
sures of texture are found in the literature.27–30

Recently, special multi-dimensional co-occurrence
matrices were used for object recognition and
matching.31–33Dacheng et al.34 used 3D co-occurrence
matrices in content-based image retrieval (CBIR)
applications.

The PS is an important tool to encode structural
information. It gives global information about the
basic elements that form the image. The power
spectra of real-world images exhibit very di®erent
energy distributions for each orientations and spa-
tial frequencies. In analyzing images from a wide set
of real-world environments, a strong bias toward
horizontal and vertical orientation are observed.35

PS is also used for texture classi¯cation.36 For this
reason, PS is considered here for classi¯cation and
was used for image registration and watermarking
recently.37 Here, we are not interested in a detailed
analysis of the PS which would be as complicated as
studying the pixelated image itself. For our appli-
cation, the PS of the ¯ve-grade scale images has
discriminative features at di®erent frequency ran-
ges. In this paper, the proposed VCs of grade image
is a weighted combination between features from
GLCM, PS, and linear speci¯city of the image.

2. Materials and Methods

The ¯ve reference images (Fig. 1) of the new grad-
ing scale20 were used in our experimental study. In
order to distinguish between grades, speci¯c obser-
vations have been made to the images representing
them. An observation is related to the frequency

domain of the images, small details are more present
in the low-grade images which represent in the fre-
quency domain a high-frequency component in the
Fourier space. The second observation is the more
frequent presence of a line segment in the lower
grades more than the higher ones. The third is the
presence of di®erent textures in the images repre-
senting each grade. For these reasons, we propose
VCs combining all three observations; it includes
texture analysis, linear structure analysis in time
domain, and PS analysis in Fourier space. Figure 2
shows the block diagram of the method used for the
construction of the VC.

All technical processing of digital images was
made using ImageJ NIH software and Matlab 7.
The following section describes each component
method of VCs construction.

2.1. Preprocessing of the original

images

In order to process the images, they should all be
normalized to the same range of gray values and
represented at similar conditions in terms of con-
trast and histogram distribution. In order to do so, a
contrast enhancement procedure of the images was
performed. It involves normalization and then his-
togram equalization. Figure 3 shows the images
after contrast enhancement.

2.2. Analysis of the images in time
domain for linear structure

detection

The images were made into binaries before the
analysis. This process was automatic and used the
histogram of the image in order to group all pixels in

Input

Pre-processing

Texture analysis
(AGM, contrast, 

correla�on) 

Linear structure 
extrac�on (number 

of lines-NL)

Fourier analysis 
(Power spectrum)

Vector Characteris�cs

Texture analysis
(AGM,contrast,

correla�on)

Fig. 2. Block diagram of the image processing scheme.
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the image into two groups. A threshold was selected
from the histogram representing the global mini-
mum. The values of all pixels having higher values
than the threshold are set to 1 and those having
values lower than the threshold are set to zero.
Di®erent types of automatic threshold exist in
\ImageJ", all of them were tested on the original
images and the \Outsu" method of threshold gave
the optimal threshold for binarization. The images
after the binarization process are shown in Fig. 4.

Particle analysis was used in order to di®erenti-
ate between the grades in terms of linearity. This
analysis counts and extracts the linear objects in the
image. All objects less than 20 pixels in size were
considered as noise. Objects were considered as lines
if the circularity was close to zero (0.0–0.2). The
outline of the detected objects and the number of
linear objects (NL) detected in each image of grade
0 are shown in the results section.

2.3. PS analysis

In order to validate the observation related to the
images' frequency distribution, the images were
transformed into Fourier space using Fast Fourier
Transform (FFT). The FFT for the grade 0 image is
shown in Fig. 5. The 2D Fourier transform of digital
image is given in Eq. (1) and the PS is given in
Eq. (2).

Yp½fx; fy� ¼
X1

x¼�1

X1

y¼�1
g½x; y�e�j2�ðxfxþyfyÞ; ð1Þ

P ðfxfyÞ ¼ jY ðfx; fyÞj2; ð2Þ
where, YP is the Fourier transform function; fx,
fy are frequencies in the x and y directions. x, y
are coordinates in real space; g[x, y] represents a
pixel of the image in real space; j is a complex
number.

G1G0

G3G2

G4

Fig. 3. Images after normalization and contrast enhancement.
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Avisual analysis of thePS imagewas very di±cult;
in order to make the process of comparison easier in
Fourier space a circularly averaged radial plot of
the PS of each image was plotted as shown in Fig. 6.

2.4. Texture analysis

Texture analysis is an important tool for image
classi¯cation. Features computed from the co-oc-
currence matrix are an e±cient tools used to repre-
sent, compare, and classify textures. Co-occurrence
matrix captures features of a texture using spatial

Fig. 6. The Radial plots of PS for ¯ve-grade scale images.

G1

G3

G0

G2

G4

Fig. 4. Binary images.

Fig. 5. The FFT for the grade 0 TF image.
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relations of similar gray tones. The following set of
standard features derivable from a normalized co-
occurrence matrix was used in this process in order
to discover similarities and diversities in the grade
images. The set include of standard features include
angular 2nd moment [Eq. (3)], contrast [Eq. (4)],
correlation [Eq. (5)], and entropy [Eq. (6)].

Angular 2nd Moment ðAGMÞ ¼
X

i

X

j

P ½i; j�2;

ð3Þ

contrast ¼
XNg�1

n¼0

n2
XNg

i¼1

XNg

j¼1

P ½i; j�;

where ji� jj ¼ n

ð4Þ

correlation ¼
PNg

i¼1

PNg
j¼1ði; jÞP ½i; j� � �x�y

�x�y
; ð5Þ

Entropy ¼ �
X

i

X

j

P ½i; j� logðP ½i; j�Þ; ð6Þ

where, P [i,j] is the [i,j]th entry in a gray-tone spatial
dependence matrix, Ng is the number of distinct
gray levels in the quantized image, � is the standard
deviation and � is the average.

One negative aspect of the co-occurrence matrix
is that the extracted features do not necessarily
correspond to visual perception. All the features
were measured in 4 directions such as 0�, 45�, 90�
and 135� by using a distance of 1 pixel.

3. Results

3.1. PS analysis

Figure 5 shows the FFT of the image of grade 0.
Figure 6 shows the radial average PS of all TF grade
images. At low frequency, area less than 30Hz
graded 0 to 3 were ranked from least to the greatest.
Grade 4 in the low-frequency region was similar to
grade 2. Figure 7 shows the PS for the ¯rst 4 grades
(G0–G3). It was noticed that the power spectra
between points 1 and 30Hz for grades 0 to 3 were
well ranked from the lowest to the highest. Grade 1
is dominant from point 43 up to 132Hz then G4
dominates the PS up to 340Hz. Ignoring G4, it was
clear that G0 has the highest power in the range of
153–228Hz, followed by G1, G3 and G2. Grades 0
to 3, which have patterns like trees branches, are
ordered from the least to the greatest at low fre-
quencies (3 to 30Hz). Also, they were ordered from

high to low power from G0 to G3 at high frequency
from 153 to 228Hz. From 228 to 380Hz, all 4 grades
have similar PS and G4 has a dominant PS from
frequency of 132 to 340Hz.

3.2. Texture analysis

The texture analysis is shown in Tables 1 and 2,
where the values of four standard features selected
were presented at di®erent angles (0�, 90�, 45� and
135�). The distance used to calculate the features
was 1 pixel. After examining the results in Tables 1
and 2, the entropy was eliminated because of the
non-signi¯cant discrimination between the grade
images. The correlation in Table 1 showed that the
lowest value was for G0 and the highest was for the
image of grade 3. Grades 1 and 2 were similar with a

0
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160
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180
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200
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33
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35
1

36
5

37
9

G0

G1

G2

G3

Fig. 7. PS of the images of grades 0, 1, 2, 3.

Table 1. The texture features at angels 0� and 90�.

Gray level
(0� and 90�) AGM Contrast Correlation Entropy

G0 0.57 0.135 0.63 0.93
G1 0.18 0.30 0.79 0.85
G2 0.32 0.16 0.79 0.92
G3 0.36 0.135 0.87 0.93
G4 0.33 0.24 0.70 0.88

Table 2. The texture features at angles 45� and 135�.

Gray level
(45� and 135�) AGM Contrast Correlation Entropy

G0 0.39 0.11 0.98 0.96
G1 0.29 0.215 0.97 0.92
G2 0.32 0.12 0.98 0.95
G3 0.34 0.11 0.98 0.96
G4 0.33 0.16 0.97 0.93
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value of 0.79. The correlation at direction 45� and
135� were not considered because of the similarity
between the values of all grade reference images.

It was clear from Table 2 that G0 had the highest
AGM (0.57), and the lowest AGM (0.18) was for
G1. The AGM for G2 to G4 images was about 0.33.
The highest contrast (0.3) was for G2 and the
lowest was for G0 and G3 (0.135). The contrast of
G4 was double as for G0 and G3. From Table 2, the
same conclusion has been drawn as from Table 1,
where G2, G3 and G4 have similar AGMs at dif-
ferent orientations (angles). Regarding the contrast,
G1 in all orientations has the highest value followed
by the value of G4.

3.3. Linear structure analysis

After applying the particle analysis function de-
scribed in the method for detecting the lines or
linear structures in the image, a graphical result was
presented in Fig. 8. It shows a visual distribution of
line segments in the images. Table 3 shows the
number of lines (NBL) detected in each of the ¯ve
grades images.

3.4. Proposed VC of the grade images

From the resultant quanti¯cation of the observa-
tions described in previous sections, a careful se-
lection of the components, especially those varying
from one image to another, was performed. The
selected components forming the proposed VC are
shown in Eq. (7).

VC ¼ ½PSð19Þ;PSð80Þ;PSð190Þ;NBL;AGM0;

AGM45;CORR0;CON0;CON45�; ð7Þ
where, PS(19) is the PS at low frequency at 19Hz
in the radial plot; PS(80) is the PS at medium

frequency at 80Hz in the radial plot; PS(190) is the
PS at high frequency at pixel 190 in the radial plot;
NBL is the NBL detected in the image; AGM0 is
the angular moment at direction 0�; AGM45 is the
angular moment at direction 45�; CORR0 is the
correlation at direction 0�; CON0 is the contrast at
direction 0� and CON45 is the contrast at direction
45�. Resultant reference vectors characteristics for
grades G0 to G4 are represented as Eqs. (8).

VCðG0Þ ¼ ð135; 140; 112; 185; 0:57; 0:39; 0:63; 0:135; 0:11Þ;
VCðG1Þ ¼ ð147; 150; 112; 85; 0:18; 0:29; 0:79; 0:3; 0:215Þ;
VCðG2Þ ¼ ð157; 143; 108; 24; 0:32; 0:32; 0:79; 0:16; 0:12Þ;
VCðG3Þ ¼ ð160; 140; 112; 24; 0:36; 0:34; 0:87; 0:135; 0:11Þ;
VCðG4Þ ¼ ð153; 143; 121; 60; 0:33; 0:33; 0:7; 0:24; 0:16Þ:

ð8Þ
The values in the same VC have di®erent orders

of magnitude, the ¯rst three components of VC
have the same order of magnitude and their values
were much bigger than the last ¯ve values of the
same vector. This is due to the di®erence of origins
of those components. A normalization process was
¯rst applied to the ¯rst three components as de-
scribed in Eq. (9).

PSNði; jÞ ¼ PSði; jÞ=MaxðPSði; jÞÞ; ð9Þ
where PSN is the normalized PS component, i is the
frequency at which the PS is selected (i ¼ 19, 80, or

G1G0

Fig. 8. Line segments in the images for grades 0 and 1.

Table 3. The NBL detected
in grades images.

Grade NBL

Grade 0 185
Grade 1 85
Grade 2 24
Grade 3 24
Grade 4 68

Diagnosis of dry eye using TF images
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190), j ¼ 0; . . . ; 4 and Max represents the maximum
value among PS(i, j).

A normalization process was also applied on the
fourth component of the vector, similar to the ones
of Eq. (9). The VC was split into three parts in
order to provide di®erent weights for components
coming from di®erent sources.

The vector became VC ¼ �VCPS þ �VCL þ
�VCTA, where, VCPS is the ¯rst three components
related to the normalized PS, VCL included the
normalized NBL, and VCTA included the last ¯ve
components related to texture analysis. �, � and �
are weights given to each of the three sub-vectors in
order to balance the contribution between them.
After experimental testing, the values of the opti-
mal values of the weights are: � ¼ 35%, � ¼ 15%,
and � ¼ 50%.

VCðG0Þ ¼ �VCPSðG0Þ þ �VCLðG0Þ
þ �VCTAðG0Þ; ð10Þ

where, VCPSðG0Þ ¼ ð135=160; 140=160; and 112=
160Þ, VCL ¼ ð189=189Þ, and VCTAðG0Þ ¼ ð0:57;
0:39; 0:63; 0:135 and 0:11Þ. The same process was
applied to the characteristic vectors of the other
images grades in order to get their normalized VCs.

4. Discussion

Development of an objective grading scale for the
TF test will support the validity of this test to be
applied in the clinic during the routine eye exami-
nation, in order to evaluate the ocular tear ¯lm, and
support the treatment of dry eye disease.

Two major issues are critical for the classi¯ca-
tion: the construction of feature vectors of the
image, and the classi¯cation algorithm used to as-
sign a grade to each new image. Characteristic
vector construction is the key base of the e±ciency
of the classi¯cation algorithm. In order to develop a
competitive algorithm for classi¯cation, it is essen-
tial to ¯nd a set of features with signi¯cant and
consistent discriminating power. The construction
of the VC for each TF image is a combination of
three techniques: ¯rst, texture features; second, PS
analysis; and third, linear shapes determination.
Because of scale dependency of texture, its feature
extraction is a di±cult problem.

Human visual processing uses oriented shapes
of the spatial organization to identify shapes. This
feature was used in the construction of our vector in

order to take into account the linear shapes existing
in our TF images which vary from one image grade
to the other.

The data presented above suggests that the three
main observation aspects con¯rmed the di®erentia-
tion between the graded images. This work proposes
the method of transforming the visual aspects of
the grading of TF into quantitative measurements.
The quantities are represented in ¯ve characteristics
vectors, each vector representing a grade in the re-
cently developed grading scale.20 The proposed
quanti¯cation approach is the ¯rst of its kind for TF
grading. It constitutes the backbone of computer-
based grading method in the new grading scale.
Some advantages of the computer-based grading
approach are expected over the subjective one. It is
independent from subjective human judgments
which could vary from one to another depending on
the skill and experience of the examiner, and it is
based on a ¯xed scale or standard. This approach
proposes VCs for each grading point. Extra steps
need to be developed in order to make the process
completely automatic. Further research is needed in
order to ¯nd the optimal measurement tool to be
used for comparing a VC of a new TF image with
those of the new grading scale stored in the data-
base. Weighted Euclidian distance, neural network
classi¯cation or fuzzy clustering technics need to be
explored on simulated and real data. Following this,
a classi¯cation of the new image relative of the re-
cently developed ¯ve-point scale will be possible.

5. Conclusion

This work provides the most important steps to-
ward an automatic objective grading scale of TF
images. The resulted vectors characteristics, for
each of the grades of the new ¯ve-point scale ima-
ges, are clearly distinct from each other, and they
serve as references for the ungraded images of new
patients. Our future work is to complete the auto-
mation of the grading process of the dry eye from
TF images. Distance for measurement should ¯rst
be developed, taking into account the weighting
between the components in the vector and then, a
test for a large number of patients, and lastly
compared to the manual classi¯cation of an expert.
A software package will be developed, in order to
facilitate the use in the clinics, and to train students
on the use of TF in dry eye diagnosis.
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