
Constrained regularization for noninvasive
glucose sensing using Raman spectroscopy

Wei-Chuan Shih
Department of Electrical and Computer Engineering

Department of Biomedical Engineering, University of Houston
4800 Calhoun Rd., Houston, TX 77204, USA

wshih@uh.edu

Received 13 September 2014
Accepted 24 November 2014
Published 30 December 2014

Multivariate calibration is an important tool for spectroscopic measurement of analyte con-
centrations. We present a detailed study of a hybrid multivariate calibration technique, con-
strained regularization (CR), and demonstrate its utility in noninvasive glucose sensing using
Raman spectroscopy. Similar to partial least squares (PLS) and principal component regression
(PCR), CR builds an implicit model and requires knowledge only of the concentrations of the
analyte of interest. Calibration is treated as an inverse problem in which an optimal balance
between model complexity and noise rejection is achieved. Prior information is included in the
form of a spectroscopic constraint that can be obtained conveniently. When used with an
appropriate constraint, CR provides a better calibration model compared to PLS in both
numerical and experimental studies.

Keywords: Glucose; noninvasive; multivariate calibration; partial least squares; principal com-
ponent regression; Raman spectroscopy; constrained regularization.

1. Introduction

Multivariate calibration is a powerful analytical
technique for extracting analyte concentrations
in complex chemical systems with many hidden
factors.1 Numerous applications of multivariate
calibration can be found in analyzing spectroscopic
data, where information about all the analytes can
be collected simultaneously at many wavelengths.
Explicit calibration methods such as ordinary least

squares (OLS) and classical least squares (CLS) are
often used when all of the constituent spectra can be
individually measured or pre-calibrated using pure
constituents. In contrast, implicit multivariate cali-
bration techniques such as principal component re-
gression (PCR) and partial least squares (PLS) allow
the construction of a numerical model entirely based
on spectroscopic and concentration data.2 They
are powerful because virtually no prior information
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is needed. Explicit or implicit, the goal of multivari-
ate calibration is to obtain a vector consisting of
regression coe±cients, b, such that an analyte's
concentration, c, can be accurately predicted by
taking the scalar product of b with an experimental
spectrum, s:

c ¼ sT � b; ð1Þ
where lowercase boldface type denotes a column
vector, uppercase boldface type a matrix; and the
superscriptT denotes transpose. The regression vec-
tor, b, has the same length as the measured spectra,
and thus can provide spectroscopic information re-
garding the calibration. b is unique in an ideal noise-
free linear system without constituent correlations,
and the goal of both implicit and explicit schemes
is to ¯nd an accurate approximation to b for the
experimental system of interest.

Recently, we proposed a novel hybrid technique,
called constrained regularization (CR), where im-
plicit multivariate calibration is viewed as an in-
verse problem.3 It is hybrid owning to salient
features of both explicit and implicit techniques.
CR requires only the spectroscopic and concentra-
tion data, yet allows the incorporation of the target
analyte spectrum as prior information. Starting
with the inverse mixture model as the forward
problem, we de¯ne the inverse problem with solu-
tion b. Instabilities associated with the inversion
process are removed by regularization, and prior
information is included by means of a spectroscopic
constraint.

Raman scattering provides molecular \¯nger-
printing" capability due to the inelastic interaction
between incident photon and molecular vibra-
tion.2,4–7 Raman spectroscopy o®ers several advan-
tages such as no need for reagents and separation,
nondestructiveness to the specimen, high sensitivity
with plasmonic enhancement, capability of quali-
tative and quantitative measurements, providing
molecular structure information with high spatial
resolution, etc.8–12 We demonstrated that CR pro-
vides improved performance using numerical mod-
els as well as experimental Raman spectra acquired
from human subjects. We show that with CR both
the standard error obtained using leave-one-out
cross validation (SEV) and the standard error of
prediction (SEP) improve compared to results
obtained using PLS. To the best of our knowledge,
this is the ¯rst time that CR has been applied to a

Raman skin model and in vivo data for noninvasive
glucose sensing.

2. Theory

The forward problem for our calibration model is
de¯ned by the linear inverse mixture model for a
single analyte:

c ¼ STb; ð2Þ
where S is a set of calibration spectra, with each
spectrum occupying a column of S, associated with
several known concentrations of the analyte of in-
terest that are expressed as a column vector, c, the
jth element of which corresponds to the jth column
of S. The goal of the calibration procedure is to use
the set of data [S, c] to obtain an accurate b by
inverting Eq. (2). The resulting b can then be used
in Eq. (1) to predict the analyte concentration, c, of
an independent sample by measuring its spectrum,
s. The \accuracy" of b is usually judged by its
ability to correctly predict concentrations prospec-
tively via Eq. (1).

CR enabled a convenient way to accomplish
inversion with the °exibility of incorporation of a
spectral constraint, b0, as described as the minimi-
zation of a quadratic cost function, �13:

�ð�;b0Þ ¼ jjSTb� cjj2 þ �jjb� b0jj2; ð3Þ
with jjajj the Euclidean norm (i.e., magnitude) of
a, and a spectral constraint that introduces prior
information about b. The ¯rst term of � is the
model approximation error, and the second term
the norm of the di®erence between the solution and
the constraint, which controls the smoothness of
the solution and its deviation from the constraint. If
b0 is zero, the inversion is identical to standard
Tikhonov regularization. As mentioned above, for
� ¼ 0 only least-norm (LM) solution is obtained. In
the other limit, in which � goes to in¯nity, the
solution is simply b ¼ b0. In a previous volunteer
study using PLS calibration, we retrospectively
exploited the similarity between b and g, the spec-
trum of the analyte of interest, by calculating the
correlation coe±cient of b with g.14 The result in-
dicated that signi¯cant correlation between b and g
o®ers con¯dence that the calibration is based on the
analyte of interest rather than spurious e®ects such
as co-variations among constituents. Therefore, the
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spectrum of the analyte of interest is a good choice
for the spectral constraint.

3. Experimental Methods

We have employed multivariate calibration techni-
ques such as PLS to noninvasive glucose sensing
using Raman spectroscopy.2,7,14 Raman spectros-
copy provides detailed quantitative information
about sample composition, and is thus a promising
technique for study of biological systems.15–21 Glu-
cose is a convenient analyte to study because its
concentration can be conveniently altered and
monitored in human volunteers. As shown below,
numerical simulations and in vivo data collected
noninvasively from the forearm of volunteers dem-
onstrate that CR, when used with appropriate
constraints, provides a calibration with signi¯cantly
improved prediction accuracy compared to PLS.

Numerical Study I. The numerical data were
chosen to closely simulate the human data. The
predominant Raman spectral features sampled from
the forearm are indicative of skin [Fig. 1(a)]. To
simulate the forearm spectrum, we employed a
model composed of nine representative constituents
of the skin–blood–tissue matrix and the spectrum of
glucose dissolved in water (Fig. 2). The choice of
these constituents was based on the known com-
position of skin, and the relative amplitudes were

chosen to approximate those of the skin–blood–tissue
matrix. Glucose was included at physiological con-
centrations of 70mg/dL to 210mg/dL. The resulting
simulations exhibited Raman signal ratios of glucose
to the total matrix varying from 0.2% to 0.6%, which
is the typical range measured in skin.22,23 Such rela-
tive amounts of glucose were con¯rmed by studies in
our laboratory employing minced samples of porcine
skin, a good spectral model of human skin, with ele-
vated levels of glucose. In simulating sample-to-
sample variations, we varied all of the background
constituent concentrations in a random fashion (SD
5% of the design spectral weights in Table 1), en-
suring that there is no signi¯cant correlation between
pairwise model constituents (r2 � 0:02). An appro-
priate amount of Gaussian random noise (SD 130
counts), estimated from the volunteer data, was
added to each noiseless sample. We de¯ne the signal
as the norm of the spectrum of interest. Total Raman
signal-to-noise-ratio (SNR) (12,000) and glucose
Raman SNR (24–72) can then be calculated by di-
viding the norm of the total Raman signal (1:5� 106

counts) and the glucose signal (3120–9360 counts) by
the noise magnitude (130 counts), respectively. Fi-
nally, to simulate reference concentration measure-
ment error, Gaussian random error (SD 6mg/dL)
was added to the glucose concentrations, as well. The
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Fig. 1. (a) Typical Raman spectrum of skin with background
removed; (b) typical simulated Raman spectra, 25 sample
spectra are overlaid; (c) di®erence between the ¯rst two spectra
in (b), magni¯ed 10�; (d) glucose Raman spectrum, 90mg/dL,
magni¯ed 100�. The spectra are displaced vertically for better
visualization.

400 600 800 1000 1200 1400

5

10

15

20

25

30

Raman shift (cm-1)

a.
u

.

G 

T 

P 

K 

H 

W 

C(III) 

C(I) 

CH 

A 

Fig. 2. Raman spectra of the 10 components used in the
simulation: (A): actin; (CH): cholesterol; (CI): collagen I;
(CIII): collagen III; (W): water; (H): hemoglobin; (K): keratin;
(P): phosphatidylcholine; (T): triolein; (G): glucose.
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model constituents and parameters are summarized
in Table 1. Since these parameters are similar to their
experimentally observed counterparts, we expect the
numerical data to closely simulate the in vivoRaman
spectra.

A typical Raman spectrum of human skin is
shown in Fig. 1(a). The broad slowly varying
background was ¯t to a ¯fth-order polynomial and
subtracted o® from the spectrum. A total of 25
simulated Raman spectra are shown in Fig. 1(b),
with glucose and other constituents varied within
the above design constraints. As can be seen, they
approximate the observed features of skin Raman
spectra very well. Figure 1(c) shows the di®erence
between the ¯rst two simulated spectra, magni¯ed
10�, and Fig. 1(d) shows the model glucose spec-
trum at 90mg/dL, magni¯ed 100�. The Raman
signature of glucose is not apparent in either the
sample spectra nor their di®erence, thus necessitat-
ing the use of multivariate calibration techniques.

Numerical Study II. In Numerical Study I, all
model constituents were varied in an approximately
random fashion. To study the e®ectiveness of CR
with spurious correlations present, a second nu-
merical study was performed, with signi¯cant con-
stituent co-variations present in the calibration
sample set: Strong correlation (r2 � 0:72) between
hemoglobin and glucose concentrations, and expo-
nential decays in the total Raman signal level from
the ¯rst sample to the last. (The volunteer spectra
manifested behavior of this type.14) All other model
parameters were identical to those of the ¯rst nu-
merical study.

Data Analysis. In both numerical studies, PLS,
OLS and CR calibration methods were applied
to these simulated spectra using code written in
MATLAB (The MathWorks, Natick, MA). In each

case, a set of 25 calibration sample spectra were
generated and a speci¯c method was applied, with
leave-one-out cross validation, to calculate the SEV
and b vector. This b vector was then used to predict
the concentrations of a set of 25 independent ¯eld
samples, generated using the same model para-
meters, and the SEP calculated. SEV/P were cal-
culated using the formula:

SEV=P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1 jjaj � cjjj2
n

r
; ð4Þ

with aj and cj the calculated and reference con-
centrations, respectively, and n the number of
samples. This procedure was repeated 50 times and
the results were averaged to obtain the estimates of
mean error and variance. The selection of the regu-
larization parameter was implemented as an auto-
mated search within the cross-validation framework,
and the exact value has been selected when the SEV
for a particular dataset is minimized. Therefore, it
varied across di®erent datasets.

Volunteer Study. We applied PLS and CR
calibrations to in vivo transcutaneous Raman spec-
tra collected from 17 nondiabetic human volun-
teers.14 The full details of the protocol are given in
Ref. 14. Brie°y, volunteers fasted for 12 h prior to
the experiment. Shortly after the start of the ex-
periment, the subjects drank a highly concentrated
glucose solution (Sun-dex, 75 g glucose). Raman
spectra were collected from a �1mm2 region of the
forearm of a subject, excited by 830 nm light. The
sampling volume was �1mm3. Each spectrum was
the average of 90 consecutive two-second acquisi-
tions. Spectra were acquired every 5min over a pe-
riod of 2 to 3 h. During this period, the blood glucose
concentration typically doubled and then returned
to its initial level. Reference capillary blood samples

Table 1. Model parameters.

Model constituents and spectral weights (%)

Actin Cholesterol Collagen I Collagen III Water
1 2 49 7 3
Hb Keratin Phosphatidylcholine Trolein Glucose
6 15 4 13 0.2–0.6

Glucose range 70–210mg/dL
Spectral noise 130 counts
Reference error 6mg/dL
Number of samples per calibration 25
Total Raman SNR �12; 000
Glucose Raman SNR 24–72
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were collected every 10min and analyzed by means
of a Hemocue glucose analyzer with a precision of
SD 6mg/dL. Spline interpolation was used to pro-
vide reference values at the 5-min intervals. Raw
spectra were smoothed and then the wavelength was
calibrated using an indene reference.

4. Experimental Results

Numerical Study I. Table 2 summarizes the
results from the application of each calibration
method to the numerical data, using the results of
PLS with 9 factors as a baseline. We observed the
following: First, without regularization, the SEV is
reduced only slightly, with solution led to simply the
LN solution. The SEV is reduced only slightly when
using CR with collagen I, the largest constituent of
the simulation model, as the constraint, indicating
that collagen I is a poor constraint. Finally, using
CR with either the glucose spectrum or bOLS as the
constraint, there is signi¯cant improvement in ac-
curacy. Results for OLS are further discussed in
Sec. 5.

Numerical Study II. Table 3 summarizes the
results for the second numerical study in which the
simulated data exhibit spurious correlations among
model constituents. CR with appropriate con-
straints works much better than PLS or CR with
poor constraints. This demonstrates that proper
prior spectral information indeed improves the cal-
ibration results even when confounding e®ects such

as spurious correlations exist. Since the b vector of
OLS is not derived from the calibration sample set,
spurious correlations have no e®ect on it. Thus, the
OLS results are identical to those of Table 2.

Volunteer Study. Results for the application of
PLS and CR without constraint or with glucose as
the constraint to 17 volunteers of the transcutaneous
study are summarized in Table 4 which shows the
SEV's of data from two representative volunteers
and the average over all 17 volunteers. However, due
to nonlinear e®ects such as di®erences in tissue
composition, auto°uorescence background, sam-
pling volume, and physiological conditions, di®erent
regularization parameters were selected to minimize
the SEV for each individual. This also re°ects that
better results can be obtained if the prior informa-
tion is weighed more in some volunteers, while less in
others. A potential future direction is to assess
whether CR can better handle individuals with dif-
ferent conditions such as pre-diabetic or with skin
issues. Averaging reduces variations among di®erent
individuals due to physiological and skin diversities,
unmodeled in the numerical studies. CR with glu-
cose as the constraint shows the most signi¯cant
error reduction compared to the result of PLS.
Figure 3 shows the glucose spectrum, the PLS b
vector, and the CR b vector with the glucose
spectrum as the constraint. Both PLS and CR b

Table 2. Comparison of di®erent calibration methods with
simulated data. Column 1 indicates the constraint used, col-
umns 2 and 3 list the SEV and the SEP values obtained, with
corresponding error reduction compared to PLS in parentheses,
using the OLS (noise-added) and SEP (7.2) as the best
achievable values. OLS (noiseless) indicates OLS in the absence
of spectral noise; OLS (noise-added) denotes OLS with the
same amount of spectral noise as for the PLS/CR data. Both
OLS results include the same amount of concentration error as
for PLS/CR data.

Constraint
(b0)

SEV
(mg/dL)

SEP
(mg/dL)

PLS N/A 12.7 12.3
LN N/A 12.4 (5%) 11.8 (10%)
CR Collagen I 12.4 (5%) 11.8 (10%)
CR Glucose 9.2 (64%) 8.9 (67%)
CR bOLS 8.2 (82%) 8.2 (80%)
OLS (noise-added) N/A N/A 7.2
OLS (noiseless) N/A N/A 6.7

Table 3. Comparison of di®erent calibration methods using
simulated data with substantial spurious correlations. See text
for details. Column designations are the same as for Table 2.

Constraint (b0) SEV(mg/dL) SEP(mg/dL)

PLS N/A 13.9 26.0
LN N/A 14.0 (�1%) 25.7 (2%)
CR Collagen I 14.0 (�1%) 25.8 (1%)
CR Glucose 11.9 (30%) 16.3 (52%)
CR bOLS 11.2 (40%) 13.0 (69%)

Table 4. Comparison of di®erent calibration methods with
the volunteer data. Column 1 indicates the constraint used,
columns 2 to 4 list the SEV values obtained from 2 represen-
tative volunteers and the average over all volunteers, with
corresponding error reduction compared to PLS in parentheses.
See text for details.

Constraint (b0) Volunteer A Volunteer B Average

PLS N/A 14.7 13.3 13.2
LN N/A 14.2 (7%) 10.3 (49%) 12.2 (17%)
CR Glucose 13.1 (21%) 9.8 (57%) 11.8 (23%)

Constrained regularization for noninvasive glucose sensing using Raman spectroscopy
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vectors have been smoothed using a Savitzky–Golay
13-point ¯lter to remove high-frequency °uctuations
that are likely caused by noise.

5. Discussion

PLS and PCR are valuable tools in multivariate
calibration. For spectral analysis of linear chemical
systems, they allow °exible experimental design and
are powerful in extracting correlations between
spectra and analyte concentrations. To utilize prior
information, hybrid methods such as CR allows the
°exiblity of incorporating spectroscopic information
about the analyte of interest. In the broader con-
text, regularization methods tend to perform
slightly better than either PLS or PCR.24 A heu-
ristic explanation is that regularization provides a
continuous \knob", and therefore can be used to
¯nd a better balance between model complexity and
noise rejection. Our results show that in addition to
this intrinsic advantage, an even more signi¯cant
improvement can be obtained by incorporating a
meaningful solution constraint.

In Numerical Study I, we showed that CR with
appropriate constraints outperforms PLS under
\normal" conditions, i.e., no spurious correlations
among constituents. In this case, spectroscopic noise
and concentration error are the major factors de-
termining prediction accuracy. In Numerical Study
II, CR in the presence of spurious correlations was
investigated. The results showed that CR with ap-
propriate constraints gives rise to b vectors that are

signi¯cantly less a®ected by such spurious correla-
tions, and thus provide much better predictions
than PLS. Further, compared to the scenario sim-
ulated in Numerical Study I in which no signi¯cant
constituent co-variation was present, these results
suggest that CR e®ectively reduces the detrimental
in°uence due to spurious correlations.

Table 2 also lists the OLS results for constituents
of di®erent spectral quality. For OLS (noiseless),
the b vector was calculated from noiseless constit-
uent spectra, whereas for OLS (noise-added), b was
derived from constituent spectra with SNR similar
to that of the calibration sample set used by the
implicit methods. Therefore, the results of Table 2
show that the performance of CR with a well-chosen
constraint approaches that of OLS (noise-added)
with equivalent SNR. The fact that CR cannot
predict as well as OLS (noiseless) is not surprising
because, unlike OLS (noiseless), the CR b vectors
are derived from noise-added data. The OLS (noise-
less) result is considered the fundamental limit, given
the SNR of the ¯eld spectra and the accuracy of
reference concentration measurements. When the
only error source is noise in the ¯eld spectra, the ul-
timate prediction error for OLS is inversely propor-
tional to both the SNR and an overlap factor which
quanti¯es spectral overlap among constituents.
When other sources of error such as concentration
error exist, the total prediction error can be esti-
mated by the error terms in quadrature.25,26 To
closely simulate the volunteer data in the numerical
studies, 6mg/dL was used as the reference concen-
tration error, and apparently it dominates the OLS
(noiseless) prediction error, 6.7mg/dL. However,
such a limit can be further improved with more ac-
curately measured reference concentrations.

In the numerical studies, the size of the calibration
sample set (25) was chosen to match the average
number of samples obtained from each individual in
the volunteer study. This makes the sample-to-PLS-
factor ratio �3, smaller than the standard recom-
mended value between 5 and 10.27 To con¯rm that 9
is an appropriate number of factors for PLS, a nu-
merical study with larger calibration sample size (50)
was conducted. The SEP's for PLS, CR with glucose
as the constraint, and CR with bOLS as the con-
straint, are 8.9, 7.9 and 7.8mg/dL, respectively.
Since more samples in the calibration set e®ectively
increases the SNR for the calibration and reduces the
degree of ill-posedness, the larger sample set gives
lower prediction errors for all methods. However, the
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Fig. 3. Comparison of the glucose spectrum (dashed line) with
the smoothed PLS b vector (dotted line) and CR b vector
(solid line) for data from one volunteer.
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results suggest that CR with proper constraints can
achieve the same quality calibration with fewer cal-
ibration samples as compared to PLS.

Finally, it appears that CR results in a much
greater improvement over PLS when applied to the
numerical studies than when applied to the volunteer
study. One possible explanation is that the spectral
constraints used for the volunteer study are obtained
from clear samples, e.g., glucose in water or other
individual pure constituents, whereas, transcutane-
ous Raman spectra are distorted by tissue turbidity.
Therefore, the constraints employed in the volunteer
study may not be the best choices. Incorporating
tissue turbidity into constraints is currently under
investigation in our laboratory. Another possible
explanation is that the intense slowly varying back-
ground, not present in the spectral constraints,
becomes a nonlinear confounding factor in the vol-
unteer study. We are presently seeking a better way
to model this background.

6. Conclusion

CR enjoys all advantages of implicit calibration while
e®ectively avoids potential pitfalls such as spurious
correlations among constituent concentrations. As has
been demonstrated, there is °exibility in the choice of
constraints, a convenient one being the spectrum of
the analyte of interest itself. This °exibility is crucial
because it is di±cult, if not impossible, to quantify
high-¯delity spectra and the relative \importance" of
individual constituents in living tissues. We have
shown that CR signi¯cantly outperforms PLS when
analyzing Raman spectra from human subjects, as
well as simulated data with or without spurious cor-
relations among constituents. In the volunteer study,
CR reduced the SEV by �20% on average compared
to PLS. In the numerical study, the error reduction is
�73:5% without spurious correlations, and �61% in
the presence of spurious correlations.

Further, there is no particular condition that
must be satis¯ed in order for CR to function (apart
from system linearity), which suggests that it can
serve as a general method suitable for any scenario
in which implicit calibration is performed. Its ap-
plication to transcutaneous measurement of glucose
concentration using near infrared absorption re°ec-
tance/transmission spectroscopy is presently under
investigation in our laboratory.
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