通知公告
科学研究

武汉光电青年论坛第1期

来源:武汉光电国家研究中心   作者:  发布时间:2016年05月24日  点击量:

报告题目:Charge Separation and Transport Dynamics in Low-Dimensional Colloidal Nanostructures for Solar Energy Conversion


间:2016年5月27日10:00-12:00

点:光电国家实验室A101

人:吴凯丰,洛斯阿拉莫斯国家实验室博士后

人:唐江教授


报告人简介

吴凯丰,男,1989年10月生,江西高安人。2010年本科毕业于中国科学技术大学;2015年获Emory University物理化学专业博士学位,师从著名的超快激光光谱专家Tim Lian教授(美国物理学会fellow),主要从事光伏和光催化体系内的电荷分离和传输动力学方面的研究;2015年至今,在洛斯阿拉莫斯国家实验室以实验室主任奖学金博士后身份开展研究工作(Director’s Postdoc fellow,每年有12万美金独立研究经费),师从国际光物理学泰斗V. I. Klimov博士(美国物理学会fellow,光学学会fellow,洛斯阿拉莫斯国家实验室fellow),主要方向为量子点在发光器件中的应用和机理。近四年来以第一作者身份在专业顶级期刊发表论文17篇,其中包括,Science 1篇;Chemical Society Review 1篇;Accounts of Chemical Research 1 篇,JACS 4篇; Nano Letter 1篇;ACS Nano 3篇;Chemical Science 2 篇,曾获包括Charles Lester奖(Emory University授予化学系最优博士生,每年仅一位)在内的多个奖项。


报告摘要(Abstract)

Solar energy conversion, particularly solar-driven chemical fuel formation, has been intensely studied in the past decade as a potential approach for renewable energy generation. Efficient solar-to-fuel conversion requires artificial photosynthetic systems with strong light absorption, long-lived charge separation and efficient catalysis. Colloidal quantum confined nanoheterostructures have emerged as promising materials for this application because of the ability to tailor their properties through size, shape and composition. In particular, colloidal one-dimensional (1D) semiconductor nanorods (NRs) offer the opportunity to simultaneously maintain quantum confinement in radial dimensions for tunable light absorptions and bulk like carrier transport in the axial direction for long-distance charge separations. In addition, the versatile chemistry of colloidal NRs enables the formation of semiconductor heterojunctions to separate photogenerated electron-hole pairs and deposition of metallic domains to accept charges and catalyze redox reactions. In this talk, I report our recent research progress on colloidal NR heterostructures and their applications for solar energy conversion, emphasizing on mechanistic insights into the working principle of these systems. I will introduce their electronic structures and dynamics of carrier transport and interfacial transfer obtained from time-resolved spectroscopic studies. I will also discuss how these carrier dynamics are controlled by their structures and provide key mechanistic understanding on their light driven H2 generation performances.