片上光互连和集成光信号处理是当前光通信技术的热点话题。武汉光电国家实验室王健教授带领的多维光子学实验室(MDPL:Multi-Dimensional Photonics Laboratory)一直致力于基于硅基光波导器件的片上光互连和片上光信息处理的研究,在这个领域取得了系列研究进展。
最近,在王健教授的指导下,通过和武汉邮电科学院合作,博士生桂成程成功演示了基于硅基狭缝光波导的Tbit/s高速片上光互连,该工作“基于硅基狭缝波导的Tbit/s数据传输”(Demonstration of terabit-scale data transmission in silicon vertical slot waveguides)发表在Optics Express (vol. 23, Issue 8, pp. 9736-9745, 2015)上。此外,博士生杜竫成功演示了“硅基微环谐振器的模拟信号传输”(Experimental performance evaluation of analog signal transmission in a silicon microring resonator),该工作发表在Optics Letters (vol. 40, no. 7, pp. 1181-1184, 2015)上。同时,通过和武汉光电国家实验室夏金松教授、张永博士合作,博士生桂成程、杜靖等人还演示了基于光子晶体微腔和微环谐振器的片上模拟信号传输,相关工作“硅基L3光子晶体微腔的模拟信号传输”(Experimental demonstration of analog signal transmission in a silicon photonic crystal L3 resonator)发表在Optics Express (vol. 23, no. 11, pp. 13916-13923, 2015)上。以上系列工作验证了硅基光子集成器件在超高速数字信号片上光互连和模拟信号光互连的优势和可行性。
图1 (a) 硅基狭缝光波导和片上光互连数据传输误码率曲线 (b) 微环的模拟信号传输曲线 (c) 光子晶体微腔及其模拟信号传输曲线
王健教授研究团队在硅基集成光信号处理领域也开展了广泛研究工作并取得了系列进展。在王健教授的指导下,通过和武汉邮电科学院肖希博士合作,博士生李超、桂成程利用硅基光波导成功实现了高阶OFDM m-QAM信号的波长转换。该工作“基于硅基光波导的片上多载波多级信号的波长转换”(On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide)发表在Optics Letters (vol. 39, no. 15, pp. 4583-4586, 2014)上。随后,通过与上海交通大学周林杰教授、北京大学张帆教授合作,博士生龙运实现了集成多信道Nyquist信号波长转换。该工作证明了在硅基平台上实现多信道波长转换的可行性。Optics Letters (vol. 40, no. 24, pp. 5475-5478, 2015) 在线发表了这项成果 “基于硅基光波导的多信道Nyquist 16-QAM波长转换” (All-optical multi-channel wavelength conversion of Nyquist 16-QAM signal using a silicon waveguide)。为了实现更加灵活的片上光信号处理,王健研究团队还发展了片上光信息交换和片上多进制光计算的技术。博士生桂成程先后提出并仿真实现了基于硅基狭缝光波导的两个波长间m-QAM信息交换(Optics Express, vol. 22, no. 20, pp. 24796-24807, 2014)和三输入十六进制光计算(Scientific Reports, vol. 4, article number: 7491, 2015)。为了适应光通信技术向模分复用技术发展的趋势,在王健教授指导下,硕士生张仲来提出了一种模式转换的新方法,相关成果片上模式交换“On-chip optical mode exchange using tapered directional coupler” 在线发表在Scientific Reports(vol. 5, article number: 16072, 2015)上。
图2 (a) 硅基片上多载波波长转换 (b) 硅基片上多信道波长转换 (c) 硅基片上全光信息交换 (d) 硅基片上十六进制光计算
同时,王健教授研究团队在硅基集成微波光子信息处理领域亦取得了系列研究进展。在王健教授指导下,博士生龙运近期提出了一种全光控制的微波光子滤波器,并从理论和实验上详细评估了该微波光子滤波器的性能。该工作“基于硅基微环谐振器的全光控制的微波光子滤波器:理论和实验”(All-optical tuning of a nonlinear silicon microring assisted microwave photonic filter: theory and experiment)发表在Optics Express (vol. 23, no. 14, pp. 17758-17771, 2015)上。为提高微波光子滤波器的抑制比,他们还提出一种简单的实现超高抑制比微波光子滤波器的方法,该工作实现了大于60 dB的微波光子滤波器,显著简化了高抑制比微波光子滤波器的实现结构,并增强了高抑制比微波光子滤波器的稳定性。相关研究成果“基于硅基微环谐振器的超高抑制比微波光子滤波器”(Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator)同样发表在Optics Express (vol. 23, no. 14, pp. 17739-17750, 2015)上。此外,为了增加基于微环谐振器的光信息处理和微波光子信息处理的灵活性,还提出了一种基于光力学效应的新颖的调节微环谐振器品质因子和消光比的方法(Scientific Reports, vol. 4, article number: 5409, 2014)。
图3 (a) 全光调谐微波光子滤波器 (b) 超高抑制比微波光子滤波器
以上工作得到了国家自然科学基金优秀青年科学基金(61222502)、国家自然科学基金面上项目(11574001、11274131、61077051)、国家973计划课题(2014CB340004)、新世纪优秀人才计划(NCET-11-0182)和武汉科技计划项目(2014070404010201)等项目资助。
文章链接:
[1] Chengcheng Gui, Chao Li, Qi Yang, and Jian Wang*, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Optics Express 23(8), 9736-9745 (2015).
(https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-8-9736)
[2] Jing Du and Jian Wang*, “Experimental performance evaluation of analog signal transmission in a silicon microring resonator,” Optics Letters 40(7), 1181-1184 (2015). (https://www.osapublishing.org/ol/abstract.cfm?uri=ol-40-7-1181)
[3] Chengcheng Gui, Yong Zhang, Jing Du, Jinsong Xia, and Jian Wang*, “Experimental demonstration of analog signal transmission in a silicon photonic crystal L3 resonator,” Optics Express 23(11), 13916-13923 (2015).
(https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-11-13916)
[4] Chao Li, Chengcheng Gui, Xi Xiao, Qi Yang, Shaohua Yu, Jian Wang*, “On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide,” Optics Letters 39(15), 4583-4586 (2014).
(https://www.osapublishing.org/ol/abstract.cfm?uri=ol-39-15-4583)
[5] Yun Long, Jun Liu, Xiao Hu, Andong Wang, Linjie Zhou, Kaiheng Zou, Yixiao Zhu, Fan Zhang, and Jian Wang*, “All-optical multi-channel wavelength conversion of Nyquist 16-QAM signal using a silicon waveguide,” Optics letters 40, 24 (2015)
(https://www.osapublishing.org/ol/abstract.cfm?uri=ol-40-23-5475)
[6] Chengcheng Gui and Jian Wang*, “Optical data exchange of m-QAM signals using a silicon-organic hybrid slot waveguide: proposal and simulation,” Optics Express 22(20), 24796-24807 (2014).
(https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-20-24796)
[7] Chengcheng Gui and Jian Wang*, “Silicon-organic hybrid slot waveguide based three-input multicasted optical hexadecimal addition/subtraction,” Scientific Reports 4, 7491 (2014).
(http://www.nature.com/articles/srep07491)
[8] Zhonglai Zhang, Xiao Hu, and Jian Wang*, “On-chip optical mode exchange using tapered directional coupler,” Scientific reports 5 (2014): 16072-16072.
(http://www.nature.com/articles/srep16073)
[9] Yun Long and Jian Wang*, “All-optical tuning of a nonlinear silicon microring assisted microwave photonic filter: theory and experiment,” Optics Express 23(14), 17758-17771 (2015).
(https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-14-17758)
[10] Yun Long and Jian Wang*, “Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator,” Optics Express 23(14), 17739-17750 (2015).
(https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-14-17739)
[11] Yun Long and Jian Wang*, “Optically-controlled extinction ratio and Q-factor tunable silicon microring resonators based on optical forces,” Scientific Reports, 4, 5409 (2014).
(http://www.nature.com/articles/srep05409)