光学显微镜是在亚微米分辨率开展生物医学研究的重要工具。生物组织的精细结构复杂多样,如何在三维空间用光学方法对其进行全面准确观测是公认的难题。形态复杂的神经元是大脑基本的功能单元,如何获取其完整结构对现有技术提出了极大的挑战。荧光标记的神经元胞体直径约为10-20微米,从胞体伸展出去的轴突和众多的分支纤维直径只有0.2-0.5微米,且多会投射到全脑的不同脑区。胞体与纤维在亮度上相差2-3个数量级,空间分布常常又是交织在一起。当有周边胞体的干扰下若要探测轴突上的微弱荧光信号,就如同在明亮的太阳周边观察小星星。对此类情况,传统的光学层析方法难以实现。
2021年3月1日,华中科技大学武汉光电国家研究中心生物医学光子学功能实验室骆清铭院士团队在Nature Methods以长文形式发表了文章High-definition imaging using line-illumination modulation microscopy,开发了线照明调制显微术并实现了高清成像。
骆清铭团队提出了一种高清晰度、高通量的光学层析显微成像新方法——线照明调制光学层析成像(Line illumination microscopy, LiMo)。他们巧妙地将线照明光强的高斯分布作为一种天然的照明强度调制模式,不同照明强度只对焦面上的信号产生相应调制,而对焦外背景信号不调制。因此,采用多线探测的方式可以一次性记录这些被不同强度调制的信号,并且只需要最简洁的一步线性计算,即可去除相同的焦外背景信号,获得清晰的焦面光学层析图像。与在生物医学中广泛使用的激光点共聚焦扫描显微成像、双光子激发荧光显微成像、激光线共聚焦扫描显微成像和结构光光学层析成像等经典方法相比,经理论推导证明LiMo的背景信号具有更快的衰减系数。通过实验测试也证明了这一结论,LiMo方法的信背比相比上述传统方法提高了1-2个数量级。该方法只需要简单的多线探测线照明光路,克服了传统结构光照明成像中存在残留调制伪影的固有缺陷,也无需多次成像即可获得所需数据,并具有线扫描对大范围样本成像通量高的优点,解决了传统荧光显微光学层析成像方法无法同时兼顾高分辨率、高通量和高清晰度的问题。可以说该方法不论是光路还是算法,都充分体现了技术的简洁之美。
图1 LiMo显微成像原理示意图和性能测试结果
骆清铭团队基于此进一步发展了高清荧光显微光学切片断层成像技术
(High-definition fluorescent micro-optical sectioning tomography,
HD-fMOST
)
,将
全脑光学成像从高分辨率提升到高清晰度的新标准。近年来全脑光学成像为生物医学研究带来前所未有的丰富细节的同时,也产生数据量巨大的困难。为解决这个难题,研究者们主要集中在算法领域寻求破解方案。骆清铭团队独辟蹊径地指出解决大数据困恼的根本策略应是从源头出发提升数据质量,进而提高后续数据处理和分析的效率。他们利用HD-fMOST对稀疏标记了神经元的小鼠全脑进行三维高清双色成像,以0.3×0.3×1微米体素分辨率在5天内获取了12000张冠状面图像及其细胞构筑信息,是目前以相近体素分辨率实现全脑光学成像速度最快的技术。通过分析发现,原始数据有效信号覆盖16位动态范围,平均信噪比高达110,可直接叠加生成全脑投影图。高清晰度的数据质量使神经元形态的重建速度即使在复杂度增加5倍的情况下仍然提高近2倍。文章中还给出了在线定量统计特定类型神经元的全脑分布结果,平均准确率达到95%,表明HD-fMOST获得的高质量原始数据可支持在线分析。此外,该技术实现了小鼠全脑10 TB级原始数据集的在线无损压缩,压缩率达到3%,可直接写入U盘或上传云端,有望极大地减少高分辨率全脑三维数据集在数据存储和传输方面造成的负担。
图2 HD-fMOST对稀疏标记特定神经元的小鼠全脑进行高清三维成像的结果
综上,该团队提出的LiMo显微术在快速高分辨率光学成像时能显著提高背景抑制能力。在此基础上发展的HD-fMOST技术不仅极大地提高了全脑光学成像的数据质量,而且对该领域面临的大数据难题开辟了全新的解决途径,在数据存储、传输、处理和分析等方面效率显著提高了效率,有望在标准化、规模化的脑科学研究中发挥巨大作用。
钟秋园博士与李安安教授为并列第一作者,骆清铭院士与袁菁教授为并列通讯作者,金锐博士生、张德洁硕士、李向宁教授、贾雪艳硕士、丁章恒博士生、罗盘博士、周灿博士生、姜辰宇硕士、丰钊博士、张智红教授、龚辉教授为共同作者。
特别值得关注,Nature Methods期刊在同期还报道了对骆清铭教授的人物专访。在采访中,骆老师回顾了二十年的MOST研究历程,指出HD-fMOST不是突发奇想一蹴而就的。面对全脑介观神经联接图谱绘制的重大需求,整个团队长期探索研发的工作,是在不断的实验中发现新问题,进而再解决之,推动技术持续创新的成果,将来还会不断地有新方法新技术产出。
https://doi.org/10.1038/s41592-021-01074-x
薛天 教授 (中国科学技术大学生命科学与医学部执行部长)
对生命的认识很大程度上来源于对生物样本的显微观测,数百年前显微镜的发明和细胞的发现开启了我们对生命机理的理解,直至今日生命科学领域的诸多重大突破很多都来自于显微观测技术的发展。所谓“眼见为实”诚不虚也。
近年来脑科学的研究突飞猛进,脑作为最复杂的器官,其亚微米水平的细胞构架和连接模式是其功能实现的物质基础。因此一系列针对脑组织的成像技术应运而生。由华中科技大学骆清铭院士团队研发并持续迭代更新的荧光显微光学切片断层成像 (fMOST) 技术,是目前为止世界上唯一能够实用化的实现全脑尺度单细胞连接分辨率介观脑图谱绘制的成像技术,包括美国脑计划在内的国内外诸多脑科学研究均依赖于fMOST技术实现全脑尺度单细胞水平的脑图谱绘制。
在此基础上,近日骆清铭院士团队从源头成像技术上继续创新,又研发出了线照明调制(LiMo)显微成像新方法,利用线照明的自然强度调制对样本进行线性扫描,然后通过简洁的一步线性计算重建光学切片图像,解决了传统光学显微成像过程中无法同时兼顾高分辨、高通量和高清晰度的问题。他们团队将LiMo技术与薄层组织切片技术相结合,进一步开发了高清晰荧光显微光学切片断层成像 (HD-fMOST) 技术。该成像技术具有高效的降低背景作用,允许在一个广泛的动态范围内记录和显示神经元突起信号丰富的细节。HD-fMOST高信噪比和高清晰的成像数据,让自动和人工追踪神经元形态连接更简便、更稳定、更准确和更高效,大大提高了对单个神经元重构的准确率和工作效率。这种从源头成像技术上提高的成像质量,又极大地便利了稀疏高分辨特征的脑成像数据的分析与操作,可以实现大于30倍无损数据压缩,支持在线数据存储和分析。文章结果展示了HD-fMOST技术在大规模获取和分析全脑高分辨率数据集方面的潜力。
我本人的课题组十分有幸提前使用了HD-fMOST技术,毫不夸张地讲由HD-fMOST技术获得的全脑成像数据质量是史无前例的。我们有理由相信基于LiMo的HD-fMOST成像技术必将极大的推动脑介观连接图谱的绘制,也十分期待骆清铭院士团队为中国和世界的脑科学研究带来更新更强的成像技术。