Abstract
Polarization-sensitive optical coherence tomography (PS-OCT) enables depth-resolved mapping of sample polarization information, such as phase-retardation and optical axis orientation, which is particularly useful when the nano-scale organization of tissue that are difficult to be observed in the intensity images of a regular optical coherence tomography (OCT). In this review, we survey two types of methods and systems of PS-OCT. The first type is PS-OCT with single input polarization state, which contain bulk optics or polarization maintaining fiber (PMF) based systems and single-mode fiber (SMF) based systems. The second type is PS-OCT with two different input polarization states, which contain SMF based systems and PMF based systems, through either time, frequency, or depth multiplexing. In addition, representative biomedical applications using PS-OCT, such as retinal imaging, skin cancer detection, and brain mapping, are demonstrated.
Cite this article: |
Zhenyang DING,Chia-Pin LIANG,Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 128-140. |